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1. Introduction. In previous memoirs [12], [13] devoted to the topic of effective
exploitation of excess variables in exceptional set estimates relevant to Waring’s
problem, the second author reported on investigations involving sums of squares,
and sums of cubes, respectively. The purpose of this paper is to describe how such
methods may be applied for certain higher powers, illustrating our ideas en route
with a selection of basic examples intended to provide models for future forays by
enthusiasts. The ideas underlying our methods are clearly illustrated in [12] and
[13], so for the moment we content ourselves by noting only that our methods avoid
a conventional application of Bessel’s inequality in favour of explicit control of an
exponential sum over the exceptional set itself. Such ideas also play an important
role in recent work of the authors joint with Brüdern (see [1], for example) devoted
to the representation primarily of thin polynomial sequences as sums of powers of
natural numbers. We remark that the ideas underlying our methods are simple and
concise, qualities that would be easily masked by a detailed account of the technical
aspects of our analysis. We have therefore opted for an abbreviated exposition that
makes free use of results familiar to aficionados of the modern theory of Waring’s
problem.

We begin in §§2–5 with an investigation of exceptional sets associated with sums
of biquadrates, and this entails a discussion of the associated local solubility con-
ditions. For every integer x one has x4 ≡ 0 or 1 modulo 16, and so it follows that
whenever n is the sum of s biquadrates, then necessarily n ≡ r (mod 16) with r
an integer satisfying the condition 0 6 r 6 s. Moreover, if n is the sum of s < 16
biquadrates and 16|n, then n/16 is also the sum of s biquadrates. In investigations
concerning the representation of integers n as sums of s < 16 biquadrates, there-
fore, it is reasonable to restrict attention to integers n with n ≡ r (mod 16) for
some integer r with 1 6 r 6 s. Motivated by such considerations, when s > 5 and
0 6 t 6 s, we define Es,t(X) to be the number of integers n not exceeding X that
satisfy the congruence n ≡ r (mod 16) for some integer r with 1 6 r 6 s − t, yet
cannot be written as the sum of s biquadrates. Making use of a technical estimate,
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the proof of which is deferred to §3, we establish in §2 the estimates for Es,1(X)
recorded in the following theorem.

Theorem 1.1. One has

E9,1(X)� X27/55 and E10,1(X)� X20/83.

In order to put the conclusion of Theorem 1.1 into an illuminating setting, we
recall first that Vaughan [6] has shown that all large integers n, with n ≡ r (mod 16)
for some integer r with 1 6 r 6 12, may be written as the sum of 12 biquadrates,
whence Es,0(X) � 1 for s > 12. Recent investigations of Kawada and Wooley
[4], moreover, show that E11,1(X) � 1 (see Theorem 3 of the latter paper). On
applying Vaughan’s work within conventional technology, one would obtain the
bound

Es,0(X)� X1−δ−(s−6)/16 (s > 6), (1.1)

where δ is a number slightly larger than 0.0089. The work of Kawada and Wooley,
meanwhile, would lead to the estimate

Es,1(X)� X1−(s−5)/16+ε (s > 6),

for each fixed ε > 0. The superiority of Theorem 1.1 over the latter estimates is
clear, although we emphasise that the bounds provided by (1.1) yield information
concerning a congruence class not covered by the above theorem. At the cost of
losing information concerning a second congruence class, a modest refinement of
Theorem 1.1 may be achieved. Thus, making use of a technical estimate proved in
§5, we establish in §4 the conclusion recorded in the following theorem.

Theorem 1.2. For each positive number ε, one has

E9,2(X)� X7/16+ε and E10,2(X)� X3/16+ε.

We advance in §§6 and 7 to consider exceptional sets associated with sums of
fifth powers, and here we are no longer plagued by local solubility considerations.
When s > 6, define Es(X) to be the number of natural numbers not exceeding X
that cannot be written as the sum of s fifth powers of natural numbers. It follows
from work of Vaughan and Wooley [9] that all large natural numbers are the sum
of 17 positive fifth powers, whence Es(X) � 1 for s > 17. Indeed, the technology
underlying the latter conclusion would permit the proof via classical methods of
the upper bound

Es(X)� X1−σ−(s−9)/40 (s > 9), (1.2)

for a certain number σ slightly larger than 0.0095. Again making use of a technical
estimate prepared in §7, we establish in §6 upper bounds for Es(X) substantially
sharper than those recorded in (1.2) for the cases s = 15 and 16.
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Theorem 1.3. One has

E15(X)� X62/105 and E16(X)� X17/30.

We remark that in the conclusions of both Theorems 1.1 and 1.3, a further mod-
est reduction in the exponents should be feasible by exploiting efficient differencing
methods restricted to minor arcs only, as will be familiar to aficionados of the mod-
ern Hardy-Littlewood method. Such improvements being in any case small, and
requiring significant technical elaboration, it seems prudent to conserve space by
instead encouraging energetic readers to explore such options elsewhere.

Throughout, the letter ε will denote a sufficiently small positive number. We use
� and � to denote Vinogradov’s well-known notation, implicit constants depend-
ing at most on ε, unless otherwise indicated. In an effort to simplify our analysis,
we adopt the convention that whenever ε appears in a statement, then we are im-
plicitly asserting that for each ε > 0 the statement holds for sufficiently large values
of the main parameter. Note that the “value” of ε may consequently change from
statement to statement, and hence also the dependence of implicit constants on ε.

2. The proof of Theorem 1.1: the nub. It is reasonably simple to describe the
key elements of our proof of Theorem 1.1, and our aim in this section is to provide
a complete account save for some technical discussion associated with the major
arc treatment. Fundamental to our argument is the identity

(x+ y)4 + (x− y)4 + (2y)4 = 2(x2 + 3y2)2, (2.1)

exploited first in the context of Waring’s problem for biquadrates in earlier work of
Kawada and Wooley [4].

Let N be a large positive number, and let s and t be integers with s > 5 and
0 6 t 6 s. We denote by Ns,t the set of integers n that satisfy the congruence
n ≡ r (mod 16) for some integer r with 1 6 r 6 s − t. Define next Zs,t(N) to be
the set of integers n ∈ Ns,t with N/2 < n 6 N that cannot be written as the sum
of s biquadrates. It is convenient to abbreviate card(Zs,t(N)) to Zs,t. Next put

P = N1/4, and write e(z) for e2πiz. We introduce the exponential sums

f(α) =
∑

P/2<z6P

e(αz4) and g(α) =
∑

P/46x,y6P
x 6=y

e(2(x2 + 3y2)2α). (2.2)

In order to make use of recent developments in the circle method involving the use
of smooth numbers, we require some further notation. When X and Y are positive
real numbers, denote by A(X,Y ) the set of Y -smooth numbers up to X, that is

A(X,Y ) = {n ∈ [1, X] ∩ Z : p|n and p prime implies that p 6 Y }.

We then write
h(α;X,Y ) =

∑
x∈A(X,Y )

e(αx4). (2.3)

We recall at this point some mean value estimates stemming from the sharpest
available versions of the new iterative methods in Waring’s problem.
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Lemma 2.1. There is a positive number η with the property that whenever R 6 P η,
one has ∫ 1

0

|f(α)2h(α;P,R)4|dα� P 3.18343

and ∫ 1

0

|f(α)2h(α;P,R)8|dα� P 6.21344.

Proof. On considering the underlying diophantine equations, the desired estimates
are immediate from Theorem 2 of Brüdern and Wooley [2].

In the next section, and the remainder of this one, we suppose that η is chosen
sufficiently small that the conclusion of Lemma 2.1 holds. We then put R = P η,
and abbreviate h(α;P,R) simply to h(α).

We now focus attention on the proof of Theorem 1.1. Suppose that l is 0 or 1,
and write

R1,l(n) =

∫ 1

0

g(α)f(α)2+lh(α)4e(−nα)dα. (2.4)

Then on recalling the identity (2.1), it is apparent from (2.2)–(2.4) that whenever
s = 9 + l and n ∈ Zs,1(N), one has R1,l(n) = 0. Define the exponential sum

Ks,1(α) =
∑

n∈Zs,1(N)

e(nα).

Then we conclude from (2.4) that

∫ 1

0

g(α)f(α)2+lh(α)4Ks,1(−α)dα =
∑

n∈Zs,1(N)

R1,l(n) = 0. (2.5)

We interpret the relation (2.5) by means of the Hardy-Littlewood method. Define
the set of major arcs M to be the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 P 1/2N−1},

with 0 6 a 6 q 6 P 1/2 and (a, q) = 1. We then denote the corresponding set
of minor arcs by m = [0, 1) \M. In §3 below, we establish a lower bound for the
contribution of the major arcs to the integral on the right hand side of (2.4), and
this we summarise in the form of a lemma.

Lemma 2.2. Suppose that l is 0 or 1, and that n ∈ N9+l,1 satisfies N/2 < n 6 N .
Then one has ∫

M

g(α)f(α)2+lh(α)4e(−nα)dα� N1+l/4. (2.6)
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Assuming the validity of Lemma 2.2, we find that∫
M

g(α)f(α)2+lh(α)4K9+l,1(−α)dα�
∑

n∈Z9+l,1(N)

N1+l/4

= Z9+l,1N
1+l/4,

whence by (2.5),∣∣∣∫
m

g(α)f(α)2+lh(α)4K9+l,1(−α)dα
∣∣∣� Z9+l,1N

1+l/4. (2.7)

Our strategy is now to provide an upper bound for the left hand side of the in-
equality (2.7), and thereby obtain an upper bound for Z9+l,1. With this objective
in mind, we record an auxiliary estimate of use also in our proof of Theorem 1.2. It
is convenient, temporarily, to omit subscripts to the exponential sum Ks,t(α), the
set Zs,t(N), and the number Zs,t.

Lemma 2.3. For each positive number ε, one has∫ 1

0

|g(α)K(α)|2dα� P ε(Z2 + P 2Z) (2.8)

and ∫ 1

0

|f(α)g(α)K(α)|2dα� P ε(P 2Z2 + P 3Z). (2.9)

Proof. On recalling (2.2), we find from orthogonality that the integral on the left
hand side of (2.8) is bounded above by the number of integral solutions of the
system

2(m2
1 −m2

2) = n1 − n2, mi = u2i + 3v2i (i = 1, 2), (2.10)

with 1 6 ui, vi 6 P (i = 1, 2) and nl ∈ Z(N) (l = 1, 2). Given any one of the O(Z2)
possible choices for n1 and n2 with n1 6= n2, an elementary divisor function estimate
shows that there are O(P ε) possible choices for m1 and m2 satisfying (2.10), whence
O(P 2ε) possible choices for ui and vi (i = 1, 2). When n1 = n2, meanwhile, one
has u21 + 3v21 = u22 + 3v22 , and an elementary divisor function estimate demonstrates
on this occasion that there are O(P 2 logP ) possible choices for ui and vi (i = 1, 2).
We therefore conclude that∫ 1

0

|g(α)K(α)|2dα� P 2εZ2 + ZP 2 logP,

and the first desired conclusion (2.8) follows immediately.
Next observe that the integral on the left hand side of (2.9) is, by orthogonality,

bounded above by the number of integral solutions of the system

2(m2
1 −m2

2) = n1 − n2 + x41 − x42, mi = u2i + 3v2i (i = 1, 2), (2.11)
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with 1 6 ui, vi 6 P (i = 1, 2), 1 6 xj 6 P (j = 1, 2) and nl ∈ Z(N) (l = 1, 2).
Given any one of the O(Z2P 2) possible choices for n1, n2, x1, x2 with

n1 + x41 6= n2 + x42,

an elementary divisor function estimate shows that there are O(P ε) possible choices
for m1,m2 satisfying (2.11), whence O(P 2ε) possible choices for ui and vi (i = 1, 2).
The number of solutions, T1, of this type therefore satisfies

T1 � P 2+2εZ2. (2.12)

When
n1 + x41 = n2 + x42, (2.13)

meanwhile, one has u21 + 3v21 = u22 + 3v22 once again, and we deduce as before that
there are O(P 2 logP ) possible choices for ui and vi (i = 1, 2). However, a moment
of contemplation reveals that the number, S, of integral solutions of (2.13), with
1 6 xj 6 P (j = 1, 2) and nl ∈ Z(N) (l = 1, 2), satisfies

S � P εZ2 + PZ.

The latter estimate is also an immediate consequence of Lemma 2.1 of Wooley [14]
in the case j = 1. Thus we deduce that the number of solutions, T2, of this second
type satisfies

T2 � (P εZ2 + PZ)P 2 logP. (2.14)

On collecting together (2.12) and (2.14), we therefore deduce that∫ 1

0

|f(α)g(α)K(α)|2dα� P 2+2εZ2 + P 3+εZ,

and this confirms the desired estimate (2.9).

We now return to the lower bound (2.7) and extract our upper bound for Z9+l,1

(l = 0, 1). Suppose first that l = 0. We apply Schwarz’s inequality to (2.7) and
deduce that

Z9,1N �
(

sup
α∈m
|f(α)|

)
I
1/2
1 I

1/2
2 , (2.15)

where

I1 =

∫ 1

0

|f(α)2h(α)8|dα and I2 =

∫ 1

0

|g(α)K9,1(α)|2dα.

Experts in the application of the circle method will recognise that, by combining
Weyl’s inequality with standard major arc estimates, one obtains the upper bound

sup
α∈m
|f(α)| � P 7/8+ε (2.16)
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(see Lemma 2.4 and Chapter 4 of Vaughan [7], or simply refer to Lemma 3 of
Vaughan [5] for a detailed account). We therefore conclude from (2.15) and Lem-
mata 2.1 and 2.3 that

Z9,1N � P 7/8+ε(P 6.21344)1/2(Z2
9,1 + P 2Z9,1)1/2,

whence
Z9,1 � Z9,1N

−0.004 + Z
1/2
9,1 N

0.24544.

Consequently, one has Z9,1 � N27/55, and the first estimate of Theorem 1.1 is
obtained by summing over dyadic intervals.

Suppose next that l = 1. On this occasion, an application of Schwarz’s inequality
to (2.7) yields

Z10,1N
5/4 �

(
sup
α∈m
|f(α)|

)
I
1/2
1 I

1/2
3 ,

where

I3 =

∫ 1

0

|f(α)g(α)K10,1(α)|2dα.

We therefore deduce from (2.16) and Lemmata 2.1 and 2.3 that

Z10,1N
5/4 � P 7/8+ε(P 6.21344)1/2(P 2Z2

10,1 + P 3Z10,1)1/2.

Consequently, one has

Z10,1 � Z10,1N
−0.004 + Z

1/2
10,1N

0.12044,

and we may conclude that Z10,1 � N20/83. As in the first case, the second estimate
of Theorem 1.1 now follows on summing over dyadic intervals.

3. The proof of Theorem 1.1: major arc treatment. For workers well-
versed in modern incarnations of the Hardy-Littlewood method, our analysis of the
major arc contribution in (2.4) will contain no surprises. We therefore launch our
treatment immediately, pausing only to introduce some additional notation. When
a ∈ Z, q ∈ N and β ∈ R, we write

S(q, a) =

q∑
r=1

e(ar4/q) and v(β) =

∫ P

P/2

e(βγ4)dγ.

Also, we define the function f∗(α) for α ∈ [0, 1) by putting

f∗(α) = q−1S(q, a)v(α− a/q),

when α ∈M(q, a) ⊆M, and by taking f∗(α) = 0 otherwise. We begin by replacing
the exponential sum f(α), in the integral on the left hand side of (2.6), by its
approximation f∗(α).
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Lemma 3.1. When l is 0 or 1, one has∫
M

g(α)(f(α)2+l − f∗(α)2+l)h(α)4e(−nα)dα� P 27/7+l.

Proof. It follows from Theorem 4.1 of Vaughan [7] that whenever α ∈M(q, a) ⊆M,
then one has

|f(α)− f∗(α)| � P 1/4+ε. (3.1)

But for any natural number r, one has

|f(α)r − f∗(α)r| � |f(α)− f∗(α)|
(
|f(α)|r−1 + |f(α)− f∗(α)|r−1

)
, (3.2)

and so we deduce that∫
M

g(α)(f(α)2+l − f∗(α)2+l)h(α)4e(−nα)dα� P 1/4+εI4 + P (2+l)/4+εI5, (3.3)

where

I4 =

∫ 1

0

|g(α)f(α)1+lh(α)4|dα and I5 =

∫ 1

0

|g(α)h(α)4|dα.

On combining Schwarz’s inequality with a trivial estimate for f(α), one finds
that

I4 6 P lI
1/2
6 I

1/2
7 ,

where

I6 =

∫ 1

0

|g(α)2h(α)4|dα and I7 =

∫ 1

0

|f(α)2h(α)4|dα.

But on considering the underlying diophantine equation, it follows from Lemma 3.4
of Kawada and Wooley [4] that I6 � P 4+ε, and from Lemma 2.1 above one has
I7 � P 3.19. Thus we conclude that

I4 � P l(P 4+ε)1/2(P 3.19)1/2 � P 18/5+l. (3.4)

Meanwhile, again applying Schwarz’s inequality, one finds that

I5 6 I
1/2
6

(∫ 1

0

|h(α)|4dα
)1/2

,

so that by our previous estimate for I6, together with an easy consequence of Hua’s
lemma, one obtains

I5 � (P 4+ε)1/2(P 2+ε)1/2 � P 3+ε. (3.5)

Finally, on collecting together (3.3)–(3.5), the conclusion of the lemma is immediate.
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Our next step is to prune down to a narrow set of major arcs on which the
behaviour of h(α) is well-understood, and this requires further notation and some
estimates from the literature. When X is a real number with 1 6 X 6 P , let N(X)
denote the union of the intervals

N(q, a) = {α ∈ [0, 1) : |qα− a| 6 XN−1},

with 0 6 a 6 q 6 X and (a, q) = 1. For the sake of convenience, we write
K(X) = N(2X) \N(X). Finally, we write L = (logN)1/100, and take W to be the
union of the intervals

W(q, a) = {α ∈ [0, 1) : |α− a/q| 6 LN−1},

with 0 6 a 6 q 6 L and (a, q) = 1. We then put

R∗(n) =

∫
W

g(α)f∗(α)2+lh(α)4e(−nα)dα.

Lemma 3.2. When l is 0 or 1, one has∫
M

g(α)f(α)2+lh(α)4e(−nα)dα = R∗(n) +O(P 4+lL−1/3).

Proof. Let X be a positive number with X 6 P 1/2. It follows from partial integra-
tion that

v(β)� P (1 + P 4|β|)−1,

and hence we may apply Lemma 5.4 of Vaughan and Wooley [10] to deduce that∫
N(2X)

|f∗(α)2h(α)4|dα� XεP 2.

Also, as a consequence of Lemma 3.3 of Kawada and Wooley [4], one has the upper
bound

sup
α∈K(X)

|g(α)| � P 2Xε−1/2,

so that on making use of a trivial estimate for f∗(α), we find that∫
K(X)

|g(α)f∗(α)2+lh(α)4|dα� P 2+lXε−1/2
∫
N(2X)

|f∗(α)2h(α)4|dα

� P 4+lX−1/3. (3.6)

Then on summing (3.6) over X = 2iL, with i > 0 and X 6 P 1/2, we deduce that∫
M\W

g(α)f∗(α)2+lh(α)4e(−nα)dα� P 4+lL−1/3.
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The proof of the lemma is completed by recalling the conclusion of Lemma 3.1.

The proof of Lemma 2.2 is now easily completed with the use of familiar tech-
nology. Write

w(β) =

∫ P

0

e(βγ4)dγ,

and define the function h∗(α) for α ∈ [0, 1) by taking

h∗(α) = q−1S(q, a)w(α− a/q),

when α ∈ W(q, a) ⊆ W, and by taking h∗(α) = 0 otherwise. Then it follows
from Lemma 8.5 of Wooley [11] (see also Lemma 5.4 of Vaughan [6] for a related
conclusion) that there exists a positive number c, depending only on η, such that

sup
α∈W

|h(α)− ch∗(α)| � PL−10.

But the measure of W is O(L3P−4), and so it follows that

R∗(n)− c4
∫
W

g(α)f∗(α)2+lh∗(α)4e(−nα)dα

� (P 8+lL−10)(L3P−4)� P 4+lL−7. (3.7)

Write

I(m) =

∫ LP−4

−LP−4

v(β)2+lw(β)4e(−mβ)dβ,

S(m) =
∑

16q6L

q∑
a=1

(a,q)=1

(q−1S(q, a))6+le(−ma/q),

and
ρ(m) = I(m)S(m).

Then it follows from the definitions of g(α), f∗(α) and h∗(α) that∫
W

g(α)f∗(α)2+lh∗(α)4e(−nα)dα =
∑

P/46x,y6P
x6=y

ρ(n− 2(x2 + 3y2)2). (3.8)

However, the partial singular series, S(m), and singular integral, I(m), are the
same, in all essentials, as the corresponding quantities appearing in the familar
classical analysis of Waring’s problem for sums of 6 + l biquadrates. On applying
the methods of Chapters 2 and 4 of Vaughan [7], therefore, one finds with little
difficulty that there is a positive absolute constant B with the property that{

I(m) > −BP 2+lL−1/4, when m 6 N/4,

I(m)� m(2+l)/4 +O(P 2+lL−1/4), when N/4 < m 6 N .
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Moreover, one has S(m) � 1 whenever m ≡ r (mod 16) for some r with 1 6
r 6 6 + l, and otherwise, for some positive absolute constant C, one has S(m) >
−CL−1/4. The same methods, meanwhile, ensure that in all circumstances one has
I(m)� P 2+l and S(m)� 1. Consequently, whenever n ≡ r (mod 16) for some r
with 1 6 r 6 8 + l, and N/2 < n 6 N , it follows by considering values of x and y
in appropriate residue classes modulo 2 that∑

P/46x,y6P
x6=y

ρ(n− 2(x2 + 3y2)2)� P 4+l +O(P 4+lL−1/4). (3.9)

Finally, on collecting together the conclusion of Lemma 3.2 with (3.7)–(3.9), we
conclude that whenever n ∈ N9+l,1 and N/2 < n 6 N , then one has∫

M

g(α)f(α)2+lh(α)4e(−nα)dα� P 4+l = N1+l/4.

This establishes the lower bound (2.6), and hence completes the proof of Lemma
2.2.

4. More on sums of biquadrates. The proof of Theorem 1.2 may be accom-
plished with the tools developed in §§2 and 3 through heavier use of the identity
(2.1). We suppose that l is a non-negative integer, and write

R2,l(n) =

∫ 1

0

g(α)2f(α)3+le(−nα)dα. (4.1)

Then on recalling the identity (2.1), it is apparent from (2.2) and (4.1) that when-
ever s = 9 + l and n ∈ Zs,2(N), one has R2,l(n) = 0. Following the pattern
established in §2, we define the exponential sum

Ks,2(α) =
∑

n∈Zs,2(N)

e(nα), (4.2)

and conclude from (4.1) that∫ 1

0

g(α)2f(α)3+lKs,2(−α)dα = 0. (4.3)

In §5 below we establish a lower bound for the contribution of the major arcs to the
integral on the right hand side of (4.1), and this we record in the following lemma.

Lemma 4.1. Suppose that l is 0 or 1, and that n ∈ N9+l,2 satisfies N/2 < n 6 N .
Then one has ∫

M

g(α)2f∗(α)3+le(−nα)dα� N (3+l)/4. (4.4)
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Assuming the validity of Lemma 4.1, we deduce from (4.2) that∫
M

g(α)2f∗(α)3+lK9+l,2(−α)dα� Z9+l,2N
(3+l)/4,

whence by (4.3) we see that

|T1|+ |T2| � Z9+l,2N
(3+l)/4, (4.5)

where we write

T1 =

∫
m

g(α)2f(α)3+lK9+l,2(−α)dα

and

T2 =

∫
M

g(α)2(f(α)3+l − f∗(α)3+l)K9+l,2(−α)dα.

But in view of (3.1) and (3.2), one has

T2 � P 1/4+εI8,l + P (3+l)/4+εZ9+l,2I9, (4.6)

where

I8,l =

∫ 1

0

|g(α)2f(α)2+lK9+l,2(α)|dα and I9 =

∫ 1

0

|g(α)|2dα.

Furthermore, we find from (2.16) that

T1 �
(

sup
α∈m
|f(α)|

)∫ 1

0

|g(α)2f(α)2+lK9+l,2(α)|dα

� P 7/8+εI8,l. (4.7)

Then we may conclude from (4.5)–(4.7) that

P 7/8+εI8,l + P (3+l)/4+εZ9+l,2I9 � Z9+l,2N
(3+l)/4. (4.8)

Observe next that I9 is bounded above by the number of integral solutions of
the equation

2(x21 + 3y21)2 = 2(x22 + 3y22)2, (4.9)

with 1 6 xi, yi 6 P (i = 1, 2). But for each fixed choice of x2 and y2, there are
O(P ε) possible choices of x1 and y1 satisfying (4.9), and so we obtain the upper
bound I9 � P 2+ε. On substituting the latter into (4.8), we deduce that

Z9+l,2N
(3+l)/4 � P 7/8+εI8,l + P (11+l)/4+εZ9+l,2,

whence
Z9+l,2N

(3+l)/4 � P 7/8+εI8,l. (4.10)
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Suppose now, in the first instance, that l = 0. On applying Schwarz’s inequality
to the mean value I8,0, we find that

I8,0 6 I
1/2
10 I

1/2
11 , (4.11)

where

I10 =

∫ 1

0

|g(α)2f(α)4|dα and I11 =

∫ 1

0

|g(α)K9,2(α)|2dα.

But on considering the underlying diophantine equations, it follows from Lemma
3.4 of Kawada and Wooley [4] that I10 � P 4+ε. Moreover, Lemma 2.3 shows that
I11 � P ε(Z2

9,2 + P 2Z9,2). Thus we deduce from (4.10) and (4.11) that

Z9,2N
3/4 � P 7/8+ε(P 4+ε)1/2(Z2

9,2 + P 2Z9,2)1/2,

whence

Z9,2 � Z9,2P
ε−1/8 + Z

1/2
9,2 P

7/8+ε.

We therefore obtain the upper bound Z9,2 � N7/16+ε, and so the first estimate of
Theorem 1.2 follows on summing over dyadic intervals.

Suppose next that l = 1. Applying Schwarz’s inequality once again, we now find
from (4.10) that

Z10,2N � P 7/8+εI
1/2
10 I

1/2
12 ,

where

I12 =

∫ 1

0

|f(α)g(α)K10,2(α)|2dα.

Then by the above estimate I10 � P 4+ε, and the second estimate of Lemma 2.3,
we obtain the upper bound

Z10,2N � P 7/8+ε(P 4+ε)1/2(P 2Z2
10,2 + P 3Z10,2)1/2.

Thus we conclude that

Z10,2 � Z10,2P
ε−1/8 + Z

1/2
10,2P

3/8+ε,

and the estimate Z10,2 � N3/16+ε follows immediately. Finally, on summing over
dyadic intervals, we obtain the second estimate of Theorem 1.2.

5. The proof of Theorem 1.2: major arc treatment. The pruning procedure
associated with the proof of Lemma 4.1 is in many respects more straightforward
than the corresponding treatment of §3, since there are no smooth Weyl sums to
complicate matters. On the other hand, there are few conventional sums f(α)
to assist us, and so the required conclusions cannot be lifted cheaply from the
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literature. We require some additional notation before replacing the sum g(α) by
a suitable major arc approximation. Write

T (q, a) =

q∑
r=1

q∑
s=1

e(2a(r2 + 3s2)2/q)

and

u(β) =

∫ P

P/4

∫ P

P/4

e(2(ξ2 + 3ζ2)2β)dξdζ.

Also, define the function g∗(α) for α ∈ [0, 1) by putting

g∗(α) = q−2T (q, a)u(α− a/q),

when α ∈M(q, a) ⊆M, and by taking g∗(α) = 0 otherwise.

Lemma 5.1. When l is 0 or 1, one has∫
M

(g(α)2 − g∗(α)2)f∗(α)3+le(−nα)dα� P 14/5+l. (5.1)

Proof. Before launching our discussion of the upper bound (5.1), we require some
preliminary estimates. First we note that, as a consequence of Lemma 3.3 of
Kawada and Wooley [4], one has

sup
α∈M

|g(α)− g∗(α)| � P 3/2+ε. (5.2)

Next, from the same lemma, it follows that whenever α ∈M(q, a) ⊆M,

g∗(α)� P 2qε−1/2(1 + P 4|α− a/q|)−1. (5.3)

The latter upper bound, in particular, suffices to establish that∫
M

|g∗(α)|4dα� P 4+ε. (5.4)

Also, it follows from Lemma 3.5 of Kawada and Wooley [4] that∫ 1

0

|g(α)|4dα� P 4+ε. (5.5)

Finally, from the argument of the proof of Lemma 5.1 of Vaughan [6], one obtains
the upper bound ∫

M

|f∗(α)|6dα� P 2. (5.6)
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Returning now to the desired inequality (5.1), we note first that, in view of (5.2),
one has ∫

M

(g(α)2 − g∗(α)2)f∗(α)3+le(−nα)dα� P 3/2+ε(I13 + I14), (5.7)

where

I13 =

∫
M

|g(α)f∗(α)3+l|dα and I14 =

∫
M

|g∗(α)f∗(α)3+l|dα.

On applying Hölder’s inequality within I13, and making use of a trivial estimate
for f∗(α), we find that

I13 � P l
(∫ 1

0

|g(α)|4dα
)1/4(∫

M

|f∗(α)|6dα
)1/2(∫

M

dα
)1/4

.

Then on noting that the measure of M is O(P−3), and applying (5.5) and (5.6),
we see that

I13 � P l(P 4+ε)1/4(P 2)1/2(P−3)1/4 � P 5/4+l+ε.

A comparison between (5.4) and (5.5) reveals that the same treatment, applied to
I14, yields the upper bound I14 � P 5/4+l+ε, and hence we conclude from (5.7) that∫

M

(g(α)2 − g∗(α)2)f∗(α)3+le(−nα)dα� P 11/4+l+ε,

as desired. The conclusion of the lemma now follows immediately.

Write

I∗(q, n) =

∫ q−1P−7/2

−q−1P−7/2

u(β)2v(β)3+le(−nβ)dβ

and

A∗(q, n) =

q∑
a=1

(a,q)=1

(q−1S(q, a))3+l(q−2T (q, a))2e(−na/q).

Then it follows from Lemma 5.1 that∫
M

g(α)2f∗(α)3+le(−nα)dα =
∑

16q6P 1/2

I∗(q, n)A∗(q, n) +O(P 14/5+l). (5.8)

Next define the complete singular integral I∗(n) by

I∗(n) =

∫ ∞
−∞

u(β)2v(β)3+le(−nβ)dβ.
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From Lemmata 3.1 and 3.3 of Kawada and Wooley [4], one has

u(β)2v(β)3+l � P 7+l(1 + P 4|β|)−2,
and thus I∗(n) is absolutely convergent with I∗(n)� P 3+l, and whenever q 6 P 1/2

one has the estimate

I∗(q, n)− I∗(n)� P 7+l

∫ ∞
q−1P−7/2

(1 + P 4β)−2dβ � P 3+l(q/P 1/2)1/5. (5.9)

Furthermore, the standard theory of exponential sums shows that A∗(q, n) is a
multiplicative function of q (see, for example, §2.6 of Vaughan [7]). Also, from
Lemmata 3.2 and 3.3 of Kawada and Wooley [4], for each prime power ph one has

A∗(ph, n)�
{
p−3/2, when h = 1,

h2p−3h/4, when h > 1.
(5.10)

Thus we find that
∞∑
q=1

(q/P 1/2)1/5|A∗(q, n)| � P−1/10 and

∞∑
q=1

|A∗(q, n)| � 1. (5.11)

On substituting (5.9) and (5.11) into (5.8), we conclude that∫
M

g(α)2f∗(α)3+le(−nα)dα = I∗(n)S∗(n) +O(P 29/10+l), (5.12)

where S∗(n) denotes the singular series

S∗(n) =

∞∑
q=1

A∗(q, n).

The proof of Lemma 4.1 is now almost complete. We remark next that a routine
application of Fourier’s integral theorem confirms that whenever N/2 < n 6 N ,
one has I∗(n) � P 3+l. Also, the upper bound for A∗(ph, n) provided by (5.10)
guarantees that S∗(n) may be written as the absolutely convergent infinite product

S∗(n) =
∏

$ prime

Ω$,

where

Ω$ =
∞∑
h=0

A∗($h, n).

Here, from (5.10), we have the estimate Ω$ = 1+O($−3/2), and routine arguments
show that whenever n ∈ N9+l,2, one has Ω$ > 0 (the reader may care to inspect
pp. 189–190 of Kawada and Wooley [4] at this point). Thus we may conclude that
S∗(n) � 1. Finally, on inserting the above estimates into (5.12), we arrive at the
lower bound ∫

M

g(α)2f∗(α)3+le(−nα)dα� P 3+l +O(P 29/10+l),

valid whenever N/2 < n 6 N and n ∈ N9+l,2. This completes the proof of Lemma
4.1.
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6. Sums of fifth powers. Following the pattern established above in our account
of the proofs of Theorems 1.1 and 1.2, we defer to §7 a technical discussion of the
major arc treatment associated with the proof of Theorem 1.3. The remaining part
of the proof of Theorem 1.3 is straightforward to describe, and makes use of the
identity

(h+ x)5 + (h− x)5 + (h+ y)5 + (h− y)5 + (h+ x+ y)5 + (h− x− y)5

= 20h(x2 + xy + y2 + h2)2 − 14h5 (6.1)

applied in earlier work of Kawada and Wooley [3] devoted to sums of fifth powers.
Let N be a large positive number, and let s be an integer with s > 6. We define

Zs(N) to be the set of integers n with N/2 < n 6 N that cannot be written as the
sum of s fifth powers. It is convenient in what follows to abbreviate card(Zs(N)) to
Zs. At the slight risk of confusion, we now discard our earlier notation, and write
P = N1/5. We then introduce the exponential sums

f(α) =
∑

P/2<u6P

e(αu5) and G(α) =
∑

P/2<z6P

∑
16x,y6P/6

e(Φ(x, y, z)α), (6.2)

where we write

Φ(x, y, z) = 20z(x2 + xy + y2 + z2)2 − 14z5.

Also, with the definition of A(X,Y ) from §2, we now take

h(α;X,Y ) =
∑

x∈A(X,Y )

e(αx5). (6.3)

For future reference, we recall the mean value estimates recorded in the following
lemma.

Lemma 6.1. There is a positive number η with the property that whenever R 6 P η,
one has ∫ 1

0

|h(α;P,R)|6dα� P 3.136258,

∫ 1

0

|f(α)2h(α;P,R)6|dα� P 4.438657,

and ∫ 1

0

|f(α)2h(α;P,R)14|dα� P 11.077363.

Proof. On considering the underlying diophantine equations, the desired estimates
are immediate from the table on p.236 of Vaughan and Wooley [9].
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In this section and the next, we suppose that η is chosen sufficiently small that the
upper bounds recorded in Lemma 6.1 hold. We then put R = P η, and abbreviate
h(α;P,R) to h(α).

We may now discuss the proof of Theorem 1.3 in earnest. Suppose that l is 0 or
1, and write

Rl(n) =

∫ 1

0

G(α)f(α)2+lh(α)7e(−nα)dα. (6.4)

In view of the identity (6.1), it follows from (6.2)–(6.4) that whenever s = 15 + l
and n ∈ Zs(N), then one has Rl(n) = 0. Define the exponential sum

Ks(α) =
∑

n∈Zs(N)

e(nα).

Then we deduce from (6.4) that∫ 1

0

G(α)f(α)2+lh(α)7Ks(−α)dα = 0. (6.5)

We next apply the Hardy-Littlewood method. Define the set of major arcs M
now to be the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 P 5/16N−1},

with 0 6 a 6 q 6 P 5/16 and (a, q) = 1. We then denote the corresponding set
of minor arcs by m = [0, 1) \M. In §7 below, we provide a lower bound for the
contribution of the major arcs on the right hand side of (6.4), and this we record
in the form of a lemma.

Lemma 6.2. Suppose that l is 0 or 1, and that n is an integer with N/2 < n 6 N .
Then one has ∫

M

G(α)f(α)2+lh(α)7e(−nα)dα� N (7+l)/5. (6.6)

Assuming the validity of Lemma 6.2, we find that∫
M

G(α)f(α)2+lh(α)7K15+l(−α)dα� Z15+lN
(7+l)/5,

whence by (6.5),∣∣∣∫
m

G(α)f(α)2+lh(α)7K15+l(−α)dα
∣∣∣� Z15+lN

(7+l)/5. (6.7)

In order to bound Z15+l, we require a mean value estimate analogous to the first of
those established in Lemma 2.3 above. As before, we temporarily omit subscripts
to the exponential sum Ks(α), the set Zs(N), and the number Zs.
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Lemma 6.3. For each positive number ε, one has∫ 1

0

|G(α)K(α)|2dα� P ε(PZ2 + P 4Z). (6.8)

Proof. By Cauchy’s inequality, one has∫ 1

0

|G(α)K(α)|2dα 6 P
∑

P/2<z6P

∫ 1

0

|Hz(α)K(α)|2dα,

where we write

Hz(α) =
∑

16x,y6P/6

e(Φ(x, y, z)α).

Then by orthogonality, we find that the integral on the left hand side of (6.8) is
bounded above by PI15, where I15 denotes the number of integral solutions of the
system

20z(m2
1 −m2

2) = n1 − n2, mi − z2 = x2i + xiyi + y2i (i = 1, 2), (6.9)

with 1 6 z 6 P , 1 6 xi, yi 6 P (i = 1, 2) and nl ∈ Z(N) (l = 1, 2). Given any one
of the O(Z2) possible choices for n1 and n2 with n1 6= n2, an elementary divisor
function estimate shows that there are O(P ε) possible choices for z, m1 and m2

satisfying (6.9), whence O(P 2ε) possible choices for z and xi, yi (i = 1, 2). When
n1 = n2, on the other hand, one has

x21 + x1y1 + y21 = x22 + x2y2 + y22 ,

and an elementary divisor function estimate demonstrates that there areO(P 2 logP )
possible choices for xi, yi (i = 1, 2). On accounting for the additional O(P ) possible
choices for z in the latter case, we arrive at the estimate

I15 � P 2εZ2 + ZP 3 logP,

whence ∫ 1

0

|G(α)K(α)|2dα� P 1+ε(Z2 + ZP 3).

This establishes the conclusion of the lemma.

We are now equipped to complete our proof of Theorem 1.3. Suppose first that
l = 0. On applying Schwarz’s inequality to (6.7), we find that

Z15N
7/5 �

(
sup
α∈m
|f(α)|

)
I
1/2
16 I

1/2
17 , (6.10)



20 KAWADA AND WOOLEY

where

I16 =

∫ 1

0

|f(α)2h(α)14|dα and I17 =

∫ 1

0

|G(α)K15(α)|2dα.

By combining Weyl’s inequality with standard major arc estimates (see Lemma 2.4
and Chapter 4 of Vaughan [7]), one obtains

sup
α∈m
|f(α)| � P 15/16+ε. (6.11)

Thus we deduce from (6.10) and Lemmata 6.1 and 6.3 that

Z15N
7/5 � P 15/16+ε(P 11.077363)1/2(PZ2

15 + P 4Z15)1/2,

whence
Z15 � Z15N

−0.004 + Z
1/2
15 N0.295237.

We therefore conclude that Z15 � N62/105, and thus the first estimate of Theorem
1.3 follows on summing over dyadic intervals.

Next consider the situation in which l = 1. An application of Schwarz’s inequality
to (6.7) now yields the upper bound

Z16N
8/5 �

(
sup
α∈m
|f(α)|

)2
I
1/2
16 I

1/2
17 .

Consequently, it follows from (6.11) and Lemmata 6.1 and 6.3 that

Z16N
8/5 � (P 15/16+ε)2(P 11.077363)1/2(PZ2

16 + P 4Z16)1/2,

from which we obtain

Z16 � Z16N
−0.017 + Z

1/2
16 N0.282737.

Thus we conclude that Z16 � N17/30, and the second estimate of Theorem 1.3
follows by summing over dyadic intervals.

7. The proof of Theorem 1.3: major arc treatment. The major arc treat-
ment required for the proof of Theorem 1.3 is complicated by the presence of the
unusual exponential sum G(α). Rather than deal directly with the latter sum, we
instead employ the remaining 9+l more conventional exponential sums within (6.6)
to obtain a useable major arc analysis, and then sum over the variables implicit
in G(α). The treatment therefore shares many features in common with that de-
scribed in §3. We begin our discussion with some additional notation. When a ∈ Z,
q ∈ N and β ∈ R, we write

S(q, a) =

q∑
r=1

e(ar5/q) and v(β) =

∫ P

P/2

e(βγ5)dγ.

Also, we define the function f∗(α) for α ∈ [0, 1) by putting

f∗(α) = q−1S(q, a)v(α− a/q),

when α ∈M(q, a) ⊆M, and by taking f∗(α) = 0 otherwise.
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Lemma 7.1. When l is 0 or 1, one has∫
M

G(α)(f(α)2+l − f∗(α)2+l)h(α)7e(−nα)dα� P 69/10+l.

Proof. From Theorem 4.1 of Vaughan [7], we find that whenever α ∈M(q, a) ⊆M,
one has

|f(α)− f∗(α)| � P 5/32+ε.

On recalling the general inequality (3.2), we deduce that∫
M

G(α)(f(α)2+l − f∗(α)2+l)h(α)7e(−nα)dα

� P 5/32+εI18 + P 5(2+l)/32+εI19, (7.1)

where

I18 =

∫ 1

0

|G(α)f(α)1+lh(α)7|dα and I19 =

∫ 1

0

|G(α)h(α)7|dα.

On making use of a trivial estimate for f(α), it follows from Schwarz’s inequality
that

I18 6 P lI
1/2
20 I

1/2
21 ,

where

I20 =

∫ 1

0

|G(α)2h(α)8|dα and I21 =

∫ 1

0

|f(α)2h(α)6|dα.

But on considering the underlying diophantine equation, it follows from Lemma
3.1 of Kawada and Wooley [3] that I20 � P 9+ε, and from Lemma 6.1 one has
I21 � P 4.44. Thus we conclude that

I18 � P l(P 9+ε)1/2(P 4.44)1/2 � P 6.73+l. (7.2)

Meanwhile, again applying Schwarz’s inequality, one obtains

I19 6 I
1/2
20

(∫ 1

0

|h(α)|6dα
)1/2

,

so that our previous bound for I20, combined with the first estimate of Lemma 6.1,
yields

I19 � (P 9+ε)1/2(P 3.14)1/2 � P 6.08. (7.3)

The conclusion of the lemma follows on combining the bounds (7.1)–(7.3).

Recall next the definitions of the arcs N(X), K(X) and W from §3. We seek to
prune back the set of arcs M to the narrow set of arcs W on which we have good
control of the smooth Weyl sums h(α). We now put

R∗(n) =

∫
W

G(α)f∗(α)2+lh(α)7e(−nα)dα.
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Lemma 7.2. When l is 0 or 1, one has∫
M

G(α)f(α)2+lh(α)7e(−nα)dα = R∗(n) +O(P 7+lL−1/4).

Proof. By partial integration one has

v(β)� P (1 + P 5|β|)−1,

and so we may apply Lemma 5.4 of Vaughan and Wooley [10] to deduce that
whenever 1 6 X 6 P 5/16, one has∫

N(2X)

|f∗(α)2h(α)4|dα� XεP.

Also, on combining the conclusions of Lemmata 7.2 and 8.5 of Vaughan and Wooley
[8], one finds that

sup
α∈K(X)

|h(α)| � PX−1/11.

Consequently, on making use of trivial estimates for f∗(α) and G(α), it follows that∫
K(X)

|G(α)f∗(α)2+lh(α)7|dα

� P 3+l
(

sup
α∈K(X)

|h(α)|
)3 ∫

N(2X)

|f∗(α)2h(α)|4dα

� P 7+lX−1/4. (7.4)

The proof of the lemma is completed on summing (7.4) over X = 2iL, with i > 0
and X 6 P 5/16, and recalling the conclusion of Lemma 7.1.

The proof of Lemma 6.2 now lies within our grasp. Write now

w(β) =

∫ P

0

e(βγ5)dγ,

and define the function h∗(α) for α ∈ [0, 1) by taking

h∗(α) = q−1S(q, a)w(α− a/q),

when α ∈W(q, a) ⊆W, and by taking h∗(α) = 0 otherwise. Then it follows from
Lemma 8.5 of Wooley [11] that there exists a positive number c, depending only on
η, such that

sup
α∈W

|h(α)− ch∗(α)| � PL−10.
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Since the measure of W is O(L3P−5), we find that

R∗(n)− c7
∫
W

G(α)f∗(α)2+lh∗(α)7e(−nα)dα

� (P 12+lL−10)(L3P−5)� P 7+lL−7. (7.5)

Write

I(m) =

∫ LP−5

−LP−5

v(β)2+lw(β)7e(−mβ)dβ,

S(m) =
∑

16q6L

q∑
a=1

(a,q)=1

(q−1S(q, a))9+le(−ma/q),

and
ρ(m) = I(m)S(m).

Then it follows from the definitions of G(α), f∗(α) and h∗(α) that∫
W

G(α)f∗(α)2+lh∗(α)7e(−nα)dα =
∑

P/2<z6P

∑
16x,y6P/6

ρ(n− Φ(x, y, z)). (7.6)

But the partial singular series S(m), and singular integral I(m), are essentially the
same as the corresponding quantities appearing in the familiar classical analysis
of Waring’s problem for sums of 9 + l fifth powers. On applying the methods
of Chapters 2 and 4 of Vaughan [7], we therefore deduce that there is a positive
absolute constant B with the property that{

I(m) > −BP 4+lL−1/5, when m 6 N/4,

I(m)� m(4+l)/5 +O(P 4+lL−1/5), when N/4 < m 6 N .

Also, one deduces that S(m) � 1 uniformly in m. The same methods, on the
other hand, demonstrate that in all cases one has I(m) � P 4+l and S(m) � 1.
Consequently, whenever N/2 < n 6 N , it follows that∑

P/2<z6P

∑
16x,y6P/6

ρ(n− Φ(x, y, z))� P 7+l +O(P 7+lL−1/5). (7.7)

Finally, on collecting together the conclusion of Lemma 7.2 with (7.5)–(7.7), we
conclude that whenever N/2 < n 6 N , one has∫

M

G(α)f(α)2+lh(α)7e(−nα)dα� P 7+l � n(7+l)/5,

and this leads immediately to the desired lower bound (6.6), thereby completing
the proof of Lemma 6.2.
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